1. **Background:** It has been claimed that Tokyo Japanese (TJ) is insensitive to wh-islands when the appropriate prosody is assigned (Deguchi & Kitagawa 2002, Ishihara 2003, a.o.: DKI). For example, (1) is normally interpreted as a matrix yes/no question, where the wh-word is associated with the embedded Q-marker (embedded scope (ES) reading), but has been claimed to be interpretable as a matrix wh-question, where the wh-word is associated with the matrix Q-marker, under the right prosodic conditions (matrix scope (MS) reading). According to DKI, the range of pitch compression, following the wh-word, determines the wh-scope in (1) in TJ. But as pointed out by Hirotani (2005), no perception experiments have been conducted in support of this claim. Hirotani’s own experiments showed that while with ES prosody, yes/no answers were preferred, with MS prosody, there was no strong preference between the two interpretations in (1). Thus, she claimed that (1) with ES prosody yields only the ES reading, while (1) with MS prosody yields both the ES and MS readings.

(1) Jiro-wa [Marina-ga dare(-o) yonda ka] yuuta (ka)?
 ‘Did Jiro say [who, Marina called/invited t]?’ (ES reading)
 ‘Who, did Jiro say [whether Marina called/invited t]?’ (MS reading)

2. **New findings:** This paper presents new findings from a pilot survey on the interaction of wh-scope and prosody in Osaka Japanese (OJ). The survey showed results similar to Hirotani’s (2005) experiments: with MS prosody, there was no strong preference between the two interpretations in (1). Acceptability ratings elicited in the survey suggest that the OJ subjects found the MS prosody ill-formed; uncertainty about interpretation may be due to this ill-formedness. I compare the OJ findings with H. K. Hwang’s (2015) results for TJ, Fukuoka Japanese (FJ), and Busan Korean (BK) and suggest a possible explanation for the difference in acceptability of MS prosody across these varieties.

3. **Pilot survey:** I conducted a pilot online survey with 10 OJ speakers. As a control, I compared (1), where the embedded Q-marker is -ka [+Q] (ka-construction), with the te-construction (2), where the embedded Q-marker is the so-called quotative complementizer -te (-tte in TJ). Unlike -ka, which is always [+Q], -te is [+±Q]; it can function as a [+Q] complementizer with ES prosody. Since -te is usually used as [−Q], however, -te with [+Q] might be less acceptable than -ka for some speakers.

(2) Jiro-wa [Marina-ga dare(-o) yonda te] yuuta (ka)?
 ‘Did Jiro say [who, Marina called/invited t]?’ (ES reading)
 ‘Who, did Jiro say [whether Marina called/invited t]?’ (MS reading)

I presented 4 sentences each for the ka- and te-constructions (4 × 2 = 8 items). The 8 sentences were assigned either ES or MS prosody in OJ (8 × 2 = 16 items). The survey confirmed that OJ uses pitch compression to mark wh-scope just as does TJ (pitch tracks omitted). Finally, the 16 items were paired with either a yes/no answer (2a) or a wh-answer (2b) (16 × 2 = 32 items). I added 64 filler items (Total: 32 + 64 = 96 items). During the survey, only an answer such as (2a) and (2b) was shown on the screen. Participants listened to each question recorded by the author in OJ such as (1) and (2) and rated the appropriateness of the recorded question with respect to the answer on the screen, using a 7-point Likert scale (1: least appropriate, 7: most appropriate). This is a crucial difference with Hirotani’s experiments, as hers were forced-choice tasks, where participants were forced to choose either a yes/no answer or a wh-answer after listening to each question. Unlike her experiments, my pilot survey tested how appropriate each combination is. We predict that both the ka- and te-constructions will behave similarly if DKI’s claim is correct.

4. **Results:** The ratings were transformed to z-scores to eliminate scale bias. Figures 1 and 2 above show the average z-score of the combination between a construction and an answer type with ES and MS prosody.
prosody, respectively. The error bars show standard deviation. I did not test the statistical significance of the data due to the small number of participants, but it is obvious from Figure 1 that the ka- and te-constructions are almost the same with ES prosody: yes/no answers are strongly preferred in both constructions with ES prosody. It is also obvious from Figure 2 that the two constructions behave differently with MS prosody: wh-answers are strongly preferred in the te-construction, while there is no strong preference in the ka-construction, as Hironani found for TJ.

5. Ka-construction with MS prosody: After the survey, I conducted another short survey to see if every combination between the construction and prosody sounded natural. The same 10 participants listened to 2 sentences each for the 3 combinations (-ka + ES, -te + ES, and -te + MS) and 4 sentences for -ka + MS from the pilot survey and rated the naturalness of the prosody, using a 7-point Likert scale (1: not natural at all, 7: very natural). The mean ratings were 6.75 for -ka + ES, 2.38 for -ka + MS, 5.4 for -te + ES, and 5.95 for -te + MS. -ka + MS were rated as unnatural, unlike the other combinations. This suggests an explanation for why there is no preference between the two interpretations in the ka-construction with MS prosody. Since I did not tell my participants beforehand that some stimuli might sound unnatural or ill-formed, participants made an effort to interpret the ka-construction with MS prosody even if it was ill-formed for them. Participants had two strategies here: (i) some participants ignored MS prosody and interpreted the question with the embedded Q-marker -ka (=yes/no question) and (ii) other participants ignored the embedded Q-marker -ka and interpreted the question with MS prosody (=wh-questions). It is possible that the same explanation holds for Hironani’s TJ data.

6. Pragmatics: Notice in Figures 1 and 2 that wh-answers in the ka- and te-constructions with ES prosody are rated slightly higher than yes/no answers in the te-construction with MS prosody. I suggest that this is what the previous studies have interpreted as ambiguity in (1). That is, MS readings appear to occur in the ka-construction in (1) because some speakers try to provide a more informative answer to matrix yes/no questions containing an embedded wh-question. In the English counterpart in (3), for example, Greta can answer the question by saying, “Yes”, but it is obvious from the context that Frances wants to know what the 13th element in the periodic table is. Thus, alternatively, Greta can say, “It’s aluminum” – an apparent MS wh-answer, which is in fact simply a more informative answer to the matrix yes/no question. My data show that some speakers allow this kind of “super-informative” answer even without a context, while other speakers do not.

(3) Context: Frances is working on a crossword puzzle while Greta is reading a newspaper.

Frances: Do you know [what the 13th element in the periodic table is]?
Greta: Yes. (It’s aluminum.)

(4) Kyengchal-un [kunal Yumi-ka mwukwu-lul manassimun-ci] mwoless-eyo?

police-TOP that.day Y..NOM who-ACC met-COMP asked-ending

1Did the police ask [who, Yumi met ti, on that day?]” (ES reading) [BK; H. K. Hwang (2015): (6)]

‘Who, did the police ask [whether Yumi met ti, on that day?]” (MS reading)

8. Conclusion: OJ exhibits wh-island effects; (1) with MS prosody is ungrammatical, but (1) with ES prosody gives us “super-informative” answers. The difference in wh-scope marking strategies differentiates TJ and FJ, but both seem to show wh-island effects. In contrast, Korean (BK) is not sensitive to wh-islands.